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SOME BASIC IDEAS OF ROUGH ANALYSIS 

Hoang Xuan Phu 
Institute of Mathematics,  

18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam 

ABSTRACT. The classical analysis is often based on fine behaviors which are 
valid for all points of some subsets, even if some distance tends to zero. Since 
many things of the material universe and many objects represented by digital 
computers cannot satisfy such for-all-requirements, the so-called rough analysis 
is developed as an approach to such rough worlds. In this context, certain 
properties are only required for distances greater than some given roughness 
degree. For instance, a sequence ( )ix in a normed space is said to be roughly 
convergent to *x w.r.t. the roughness degree 0r ≥ if for all r rε > there exists 
an iε ∈ � such that i iε≥ implies * .ix x rε− < A function :f D → � is 
called roughly convex w.r.t. the roughness degree r if some convexity condition 
is fulfilled between any pair of points 0 1,x x D∈ satisfying 0 1 .x x r− ≥ To 
illustrate the main ideas and some advantages of this approach, in this paper we 
summarize some results concerned with rough convergence and rough 
continuity, fixed-point theorems of roughly continuous mappings, rough 
convexity and its application to global optimization. 

1. Introduction 
Several fundamental notions of analysis are defined in connection with some requirements 
“for all...”. For instance, a sequence ( )ix in some normed space is said to be convergent to 
*x denoted by *,ix x→ if 

*0 : .ii i i x xε εε ε∀ > ∃ ∈ ≥ ⇒ − <N

Based on the convergence, further important notions are introduced, such as continuity, 
derivative, integral, et cetera. When can we have such a convergence, where the 
corresponding distance tends to zero? It is possible as long as the considered points are ideal 
mathematical objects with radius zero, as Euclid assumed in the first book of his historical 
“Elements”: 

“A point is that which has no parts. A line is length without width.”

But for “real points” which describe real objects (such as tiny particles or even huge planets) 
by identifying them with their center points, the distance cannot be less than the sum of their 
radii, which is certainly greater than zero. Thus, the above ideal convergence is not always 
suitable for those “real points”. 



4 Some Basic Ideas of Rough Analysis 

Let us consider a convergent (or continuous) process from practical point of view. In 
general, it often cannot be measured, or calculated, or modeled, or simulated exactly, 
especially if it is done by digital computers which are only able to represent finitely many 
rational numbers. Therefore, we obtain an approximation for which the original convergence 
(or continuity) fails to maintain. It is quite natural to ask in which sense such an 
approximation is convergent (or continuous, resp.)? 

Behind the above requirement “ 0ε∀ > ”, there is a crucial quantity called infinitesimal, which 
is a significant achievement of mathematics. But one has to pay attention that this infinitesimal 
is not always applied exactly in mathematical sense, as declared by L. D. Landau and E. M. 
Lifschitz in their famous Course of Theoretical Physics (Vol. 6: Fluid Mechanics [26]): 

“... any small volume element ( )dV in the fluid is always supposed so large that it 
still contains a very great number of molecules. Accordingly, when we speak of 
infinitely small elements of volume, we shall always mean those which are 
`physically' infinitely small, i.e. very small compared with the volume of the body 
under consideration, but large compared with the distances between the 
molecules.” 

Hence, such an infinitesimal in fluid dynamics is not exactly a mathematical infinitesimal, 
which must be less than every positive real number. 

Another example of for-all-requirements is that a subset S of some linear space is named 
convex if 

[ ] ( )0 1 0 1, 0,1 : 1 .x x S x x Sλ λ λ∀ ∈ ∀ ∈ − + ∈

Indisputably, convexity is a substantial notion in functional analysis, geometry and 
optimization. But it is hard to find a material object which is really convex because most of 
physical things consist of separate tiny particles. From this point of view, such objects 
cannot be connected either. Therefore, if we see something convex or connected in our 
universe then it is almost certainly an inexact image. Even if we try to represent a convex set 
by a digital computer, we often obtain only a finite set of discrete points. 

We see that the real world and the computer world are not fine enough to satisfy such for-all-
requirements. Maybe, rough worlds also need a corresponding rough analysis? Motivated by 
this idea, we like to develop a theory which should build a bridge between rough worlds and 
the classical analysis (say, the fine analysis). To meet as many objects of rough worlds as 
possible, if necessary, we direct at modest targets which are possibly easier to attain, instead 
of following ideal ones, whose existence is difficult to prove, and which are hardly reachable 
(exactly). Especially, we like to create suitable prisms for looking complicated objects in 
some simpler manner. It is worth mentioning that some new results can be obtained, which 
are not present in the classical analysis. 

2. Rough convergence 
Throughout this paper, ( ,|| ||)X ⋅ is a normed linear space and r and ρ are two given non-
negative real numbers. 
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A sequence ( )ix X⊂ is said to be -r convergent to some point ,x X∗ ∈ denoted by 
,i

rx x∗→ if 

*0 : ,ii i i x x rε εε ε∀ > ∃ ∈ ≥ ⇒ − < +N
i.e., 

*lim sup .i
i

x x ε
→∞

− ≤

Since such an -r limit point x∗ is no more unique, we have to study the -r limit set in some 
given subset S X⊂ defined by 

,LIM : { : }.S r
i i

rx x S x x∗ ∗= ∈ →

Interesting particular cases are for instance S X= and ( )iS x= (i.e., { : }iS x i= ∈ N ). 

For S X= we write ,LIM : LIM .r X r
i ix x= If then LIM 0r

ix /≠ then ( )ix is said to be 
-r convergent and r is called a convergence degree of ( ).ix

Similarly, ( )ix X⊂ is -ρ Cauchy and ρ is a Cauchy degree of ( )ix if 

0 : , .i ji i j i x xε εε ρ ε∀ > ∃ ≥ ⇒ − < +

For 0r = and 0ρ = we have the definition of classical convergence and of Cauchy 
sequence again. 

To justify the introduction of rough convergence and rough Cauchy sequence, let us consider 
an example from numerical point of view. As mentioned in Section 1, an originally 
convergent sequence ( )iy (with iy x∗→ ) often cannot be determined exactly, but only 
approximated by some sequence ( )ix satisfying i ix y− ≤ ∆ for all ,i where 0∆> is an 
upper bound of approximation errors. In general, ( )ix is no more convergent, but 

* * *i i i i ix x x y y x y x− ≤ − + − ≤∆+ −

yields that it is -r convergent for .r = ∆ Similarly, if an originally Cauchy sequence ( )iy is 
approximated by a sequence ( )ix with 0∆> as an upper bound of approximation errors, 
then, for all 0ε > there exists iε such that 

, 2 ,i j i i i j i ji j i x x x y y y y xε ε≥ ⇒ − ≤ − + − + − < ∆+

i.e., ( )ix is a -ρ Cauchy sequence for 2 .ρ = ∆

In [34]-[37] we investigated some properties of -r limit sets, the relation between this rough 
convergence and other convergence notions, the dependence of LIMr ix on ,r and the 
dependence of convergence degree r on Cauchy degree .ρ Next, let us summarize some of 
these results. 
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2.1. Properties of -r limit sets 
As basic properties of classical convergence, we have: 

- The limit point of a convergent sequence is unique; 

- Each subsequence of a convergent sequence converges to the same limit point; 

- A convergent sequence is bounded; 

- A sequence in a relatively compact set possesses convergent subsequences. 

The analogy of these properties for rough convergence is given in the following. 

Proposition 2.1. ([34], [37])  

(a) The diameter of an -r limit set is not greater than 2 .r In general, there is no smaller 
bound.

(b) If ( )ix ′ is a subsequence of ( ),ix then LIM LIM .r r
i ix x ′⊆

(c) A sequence ( )ix is bounded if and only if there exists an 0r ≥ such that LIM 0.r
ix /≠

(d) If C X⊂ is relatively compact and 0,r ≥ then each sequence ( )ix in 

( ) ( )0 { : , 0 }r rC B x z x C z B+ = + ∈ ∈

(where ( ) : { : }rB y z X z y r= ∈ − ≤ ) contains a subsequence ( )
jix satisfying 

LIM 0
j

r
ix /≠ and 

( ),
LIM 0ij

j

x r
ix

′
/≠ for every .r r′ >

In particular, this holds true for every 0r > and every bounded sequence in a finite 
dimensional normed space. 

Since the limit point of a convergent sequence is unique, there is nothing to say about 
geometrical and topological properties of the set of limit points. But, for 0,r > an -r limit 
set may contain several points. Therefore, it is reasonable to investigate such properties of 
them. 

Proposition 2.2. ([34], [37]) LIMr ix is closed and convex. If the normed space X is 
uniformly convex, then LIMr ix is strictly convex, i.e., 

0 1, LIMr iy y x∈ and 
0 1y y≠ imply 

0 1: (1 ) int(LIM )r
iy y x xλ λ λ= − + ∈ for all ( )0,1 .λ ∈

2.2. Relations to other convergence notions 
As mentioned above, if ( )ix is an approximation of a convergent sequence iy x∗→ with r
as an upper bound of approximation error then ( )ix is -r convergent to .x∗ Conversely, if 
( )ix is -r convergent to x∗ then there exists a sequence ( )iy near ( )ix (i.e., i ix y r− ≤

for all )i which converges (in the classical sense) to .x∗ This equivalent relation is 
contained in the following more general result. 
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Proposition 2.3. ([34]) Suppose 1 0r ≥ and 2 0.r > A sequence ( )ix in X is -1 2( )r r+
convergent to x∗ if and only if there exists a sequence ( )iy in X such that 1

i
ry x∗→ and 

2,i ix y r− ≤ 1,2,i = …

The next two propositions state further close relations between the classical convergence and 
the rough convergence. 

Proposition 2.4. ([37]) Let 0r > and ( ) .ix X⊂

(a) If ( )ix X⊂ converges to x∗ then ( )LIM { : }.r
i rx B x z X z x r∗ ∗= = ∈ − ≤

(b) If ( )ix is contained in some compact set of X and if LIM ( )r
i rx B x∗= then ( )ix

converges to .x∗
(c) If X is uniformly convex and if there are 0 1, LIMr iy y x∈ satisfying 0 1 2y y r− =

then ( )ix converges to 1
0 12 ( ).y y− +

Proposition 2.5. ([37]) Let C be the set of cluster points of ( ).ix

(a) If 0C ≠ then LIM ( ).r
i c C rx B c∈⊆ ∩

(b) If ( )ix is contained in some compact set of X then 

LIM ( ) { : ( )}.r
i r r

c C
x B c x X C B x∗ ∗

∈
= = ∈ ⊆∩

Recall that if ( )i iK ∈� is a sequence of subsets of a metric space X then the subsets 

( )Lim sup : { | lim inf , 0},i iii
K x X d x K

→∞→∞
= ∈ =

( )Liminf : { | lim , 0}i ii i
K x X d x K

→∞ →∞
= ∈ =

are called upper or lower limit of this sequence, respectively (see [2]). Using these notions, 
the relation of rough convergence to set convergence in set-valued analysis can be described 
as follows. 

Proposition 2.6. ([37])  

(a) LIM Liminf ( ).r
i i r ix B x→∞=

(b) If Limsup { } 0i ix→∞ /≠ then Limsup { }LIM ( ),
i i

r
i c x rx B c

→∞∈⊆ ∩ where the equality holds 
if ( )ix is contained in some compact set of .X

2.3. The dependence of LIMr ix on r

Let ( )ix be an arbitrary sequence in .X It follows immediately from definition 

1 2LIM LIMr r
i ix x⊆ if 1 20 .r r≤ <

This monotonicity is included in the following proposition. 
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Proposition 2.7. ([37])  

(a) If 0r ≥ and 0σ > then LIM LIM (0) LIM .r r r
i i ix x B xσσ

+⊆ + ⊆

(b) If X is uniformly convex and if y is an interior point of LIMr ix then there exists an 
[0, )r r′ ∈ such that LIM .r

iy x′∈

(c) If ( )ix is contained in some compact set of X then ( ) LIMr iB y xσ ⊆ implies y ∈
LIM .r

ix
σ−

For 

: inf{ : LIM 0}r
ir r x+ /= ∈ ≠�

the above result yields 

for
and   for 

for

0
LIM int(LIM ) 0 .

0
r r
i i

r r
x x r r

r r

 /= < /≠ > /≠ >

Moreover, we have 

Proposition 2.8. ([34])  

cl(
0

LIM ) LIM LIM .r r r
i i i

r r r r
x x x′ ′

′ ′≤ < >
⊆ =∪ ∩  

If r r≠ then cl( 0 LIM ) LIM .r r
i ir r x x′

′≤ < =∪

Especially, we are interested in what happens at r r= ? The answer is not obvious and 
given for some particular cases. 

Proposition 2.9. ([34], [37])  

(a) If X is a reflexive -B space then LIM 0.r
ix /≠

(b) If ( )ix is contained in some compact set then int(LIM ) 0.r
ix /≠

(c) If X is a uniformly convex -B space then r r= if and only if LIMr ix is a singleton.

(d) If X is finite dimensional then the set-valued mapping LIMr ir x� is continuous on 
( , ),r +∞ and 

r r= if and only if LIM 0r
ix /≠ and int(LIM ) 0.r

ix /=

2.4. The dependence of convergence degree on Cauchy degree 
What is the (generally) smallest convergence degree of -ρ Cauchy sequences in some normed 
space X ? An important tool for answering this question is the Jung constant of X defined by 

{ }2 ( )
( )( ) : sup : , 0 ( ) ,Xr S
d SJ X S X d S= ⊂ < <∞
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where 

,
( ) : sup , ( ) : inf supX x Xx y S y S
d S x y r S x y

∈∈ ∈
= − = −

denote the diameter and the radius, respectively, of S in .X Obviously, 1 ( ) 2.J X≤ ≤

This constant was investigated firstly by Jung [20], who showed ( )1/22
2 1( )n n

nJ +=� for the 
-n dimensional Euclidean space 2.

n�

Due to Bohnenblust [6], ( ) 2 /( 1)J X n n≤ + if X is an -n dimensional Minkowski space. 
Later Leichtweiss [27] and Grünbaum [12] characterized those Minkowski spaces for which 
( ) 2 /( 1).J X n n= +

Ball [4] and Pichugov [51] proved 
1/ 1 1/( ) ( ) max{2 ,2 },p p

p pJ J L −= =� 1 .p≤ <∞

Davis [11] showed that ( ) 1J X = if and only if X is a -1P space. In particular, ( )J l∞ =
( ) 1.J L∞ =

Due to Amir [1], if a compact Hausdorff space T is not extremally disconnected, then for 
every finite-codimensional subspace X of ( )C T we have ( ) 2.J X = Moreover, it was 
shown by Maluta [28] and by Amir [1] that ( ) 2J X = if X is a nonreflexive Banach space. 

Theorem 2.10. ([37]) Let ( )ix X⊂ be -ρ Cauchy for some 0ρ ≥ and ( )J X be the Jung 
constant of .X Then ( )ix is -r convergent for all 12 ( ) .r J X ρ−> If dimX <∞ then ( )ix
is -r convergent for all 12 ( ) .r J X ρ−≥

Using concrete values of the Jung constant, we can find convergence degrees of -ρ Cauchy 
sequences in particular normed spaces. For instance, each -ρ Cauchy sequence ( )ix in 2

n� is 
-r convergent for all 1/2

2( 1)( ) .n
nr ρ+≥ Moreover, for this special space, we obtained a 

stronger result. 

Proposition 2.11. ([34]) Let M be a convex (not necessarily closed) subset of the 
-n dimensional Euclidean space, and ( )ix be a -ρ Cauchy sequence in M (for instance 
conv{ : }iM x i= ∈ � ). Then 

( )( )1/2,
2 1LIM 0 .M r n

i nx for r ρ+/≠ ≥  

3. Rough continuity 
As usual, a mapping :f X Y→ is said to be continuous provided x x′ → in ( )X always 
implies ( ) ( )f x f x′ → in ( ),Y where the two latter arrows denote the classical convergence 
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in the corresponding spaces. Replacing the classical convergence by the rough convergence, 
we obtain the so-called rough continuity, or - -X Yr r continuity, where Xr and Yr denote the 
convergence degrees in X and ,Y respectively. 

For 0,Xr = f is called - -0 Yr continuous if x x′ → always implies ( ) ( ).Yrf x f x′ →

By definition, Xrx x′ → means ( ),
Xr

x B x′ → i.e., the classical convergence of x ′ to the 

ball ( ).
Xr
B x Hence, for 0,X Yr r≥ = f is called -0-Xr continuous if Xrx x′ → implies 

( ) ( ( )).
Xr

f x f B x′ →

In general, f is called - -X Yr r continuity if Xrx x′ → implies ( ) ( ( )),Y
Xr

rf x f B x′ → i.e. 

( )lim sup dist( ( ), ( ( ))) ,
XrX
r Y

x x
f x f B x r

′ →
′ ≤

where dist(.,.) denotes the infimal distance between a point and a set. 

For 0X Yr r= = the - -X Yr r continuity is just the classical continuity. 

To state an example of - -0 Yr continuous mappings, let us consider the parametric 
optimization problem 

minimize ( , )f t u subject to ,u U∈

where : ,f T U× → � and T and U are subsets of suitable normed spaces. The following 
is contained in a more general result in [45]. 

Proposition 3.1. Suppose f is continuous and ( , )f t ⋅ is strictly -r convexlike, i.e., if 

0 1u u r− > then there exists a (0,1)λ ∈ such that 

0 1 0 1( ,(1 - ) ) (1 ) ( , ) ( , ).f t u u f t u f t uλ λ λ λ+ < − +

Suppose U is compact and :u T U∗ → satisfies ( , ( )) min ( , )u Uf t u t f t u∗
∈= for all .t T∈

Then u∗ is - -0 r continuous. 

As an example of use, we studied the transportation problem 

( )
0

1 2( , ( )) ( , ( )) min!
ft

t
L t x t L t u t dt+ →∫
( ) ( ) ( ),x t d t u t= −� 0 ( ) ,u t β≤ ≤

0 ( ) ,x t α≤ ≤ 0 0( ) ,x t x= ( ) ,f fx t x=

where the state function x and the control function u describe the stock and the transport 
amount, respectively. Suppose that each vehicle can carry one good unit and the transport cost 
2( , )L t ⋅ is strictly -r convexlike for 1.r = Under some additional assumptions, it was shown 

in [45] that the optimal transport amount u∗ is - -0 1 continuous, i.e., the corresponding optimal 
number of used vehicles changes at most by 1 at each point of time. 
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Note that strictly and roughly convexlike functions were investigated in [41]. 

Examples of -0-r continuous mappings can be found in the class of linear operators :f
.X Y→ It is well know that such an operator is not necessarily continuous in the classical 

sense if dim ,X =∞ even for dim 1.Y = Therefore, the next result is a particular one of 
rough analysis. 

Theorem 3.2. ([35]) Let X and Y be two normed spaces. If dimX <∞ and 0r > then 
every linear operator :f X Y→ is -0-r continuous, i.e., 

dist( , (0)) 0rx B → implies dist( ( ), ( (0))) 0rf x f B →

(even if ( (0))rf B is unbounded). 

Let us mention an important property of continuous functions: A continuous function :f
D → � on a compact set D attains its maximum and minimum. To extend the 
applicability, this Weierstrass theorem is often formulated as follows: A lower semi-
continuous function :f D → � defined by 

 lim inf ( ) ( ),
x x

f x f x
′→

′ ≥ x D∀ ∈ (3.1) 

on a compact set D attains its minimum, i.e., 

*: ( ) inf ( ).
x D

x D f x f x∗ ∈
∃ ∈ =

Note that a convex function :f D → � (on a convex set D ) is not necessarily lower semi-
continuous, even if D is a subset of a finite dimensional space. For instance, if D is the unit 
ball of a Euclidean space, z is a boundary point of ,D and 

if

if

1
( )

0 \ { },

x z
f x

x D z

 ==  ∈

then f is convex on ,D but it is not lower semicontinuous at .z This fact changes in rough 
context. 

:f D X⊂ → � is called -r lower semicontinuous if 

 
( )

lim inf ( ) inf ( ),r
rz B x Dx x

f x f z
′ ∈ ∩→

′ ≥ .x D∀ ∈ (3.2) 

Obviously, if 0r = then (3.1) and (3.2) are the same. But the more interesting case is 
0.r >

Theorem 3.3. Let D X⊂ and :f D → � be convex. Then, for an arbitrary 0,r > f is 
-r lower semicontinuous. 

The last result is also an example for the advantages of the rough way of observation. Using 
the rough lower semicontinuity, we can generalize the Weierstrass theorem as follows. 
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Theorem 3.4. Suppose that D X⊂ is compact and 0,r ≥ or (0)rD C B⊂ + for some 
relatively compact C X⊂ and 0.r > Let :f D X⊂ → � be -r lower semicontinuous. 
Then  

*( )
: inf ( ) inf ( ).

rx B x D x D
x D f x f x∗ ∈ ∩ ∈
∃ ∈ =

Two further kinds of rough continuity and their application will be explained in the coming 
section. 

4. Roughly fixed-point theorems 
The existence of solutions of equations is a central problem of mathematics. A main tool for 
this problem is given by fixed-point theorems, which deal with the existence of fixed (or 
invariant) points of a mapping :T M M→ defined by 

,x Tx∗ ∗= .x M∗ ∈

Two fundamental fixed-point principles are the following (see [59]). 

Theorem 4.1. (Banach Fixed-Point Theorem [5]) Let M be a closed nonempty set in a 
complete metric space ( , ),X d and :T M M→ be -k contractive, i.e., 

( , ) ( , ),d Tx Ty kd x y≤ ,x y M∀ ∈

for a fixed [0,1).k ∈ Then T has exactly one fixed point on ,M and for an arbitrary choice 
of initial point 0 ,x M∈ the sequence ( )ix of successive approximations 

 1 ,i ix Tx+ = 0,1,2,i = … (4.1) 

converges to the fixed point .x∗

Theorem 4.2. (Brower Fixed-Point Theorem [7]) Suppose that M is a nonempty convex 
compact set of ,n� 1,n ≥ and that :T M M→ is continuous. Then T has a fixed point. 

There are numerous generalizations of the above theorems. For instance, the Brower fixed-
point theorem was generalized to normed linear spaces by Schauder [55], and to locally 
convex topological vector spaces by Tychonov [58]. A common assumption of those 
theorems is the continuity of mapping .T What happens if T is not continuous? In general, 
we cannot expect such a mapping T to admit fixed points but only -γ fixed or -γ invariant 
points defined by 

( , ) .d x Tx γ∗ ∗ ≤

It is of interest to determine the minimal (or a possibly small) 0γ ≥ such that a given T has 
-γ fixed points. This problem was investigated in [8], [9], [10], [21], [23], [38], [40], [50],.... 

An important tool for our investigation is the self-Jung constant of a normed linear space X
defined by 
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conv2 ( )
( ) : sup : , 0 ( ) ,

( )
S

s
r S

J X S X d S
d S

   = ⊂ < <∞    

where ,( ) supx y Sd S x y∈= − is the diameter and 

conv conv
( ) : inf supS x S y S

r S x y
∈ ∈

= −

denotes the self-radius of .S Obviously, 1 ( ) 2sJ X≤ ≤ holds true for any normed space 
.X

Due to Klee [22], conv ( ) ( )S Xr S r S= for all bounded S X⊂ is equivalent to X having 

dimension 2≤ or being an inner-product space. Therefore, it follows from the results of 
Jung [20] and Routledge [54] that 

 
1/2

2
2( )
1

n
s

nJ
n
 =   +

� and  2( ) 2.sJ =� (4.2) 

Amir [1] proved 

 2( )
1s
nJ X

n
≤
+

if  dim .X n= (4.3) 

Since conv( ) ( ),X Sr S r S≤ due to Bohnenblust [6], Grünbaum [12], and Leichtweiss [27], 

there is no smaller upper bound which holds true for all -n dimensional normed spaces.  

Pichugov [51] showed 
1/ 1 1/( ) ( [0,1]) max{2 ,2 }, 1 .p p

s p s pJ J L p−= = ≤ <∞�

Self-Jung constant for some extreme cases was given by Maluta [28], for instance 

( ) 1sJ X = for 2( ,|| || )X ∞= ⋅�

and 

( ) 2sJ X = if X is a nonreflexive Banach space. 

Let us now consider -r roughly -k contractive mappings :T M M→ defined by  

|| || || || ,x yT T k x y r− ≤ − + ,x y M∀ ∈

for a fixed [0,1)k ∈ and a fixed 0.r ≥ Such a mapping may arise quite naturally. For 
instance, an original -k contractive mapping T̂ often cannot be determined exactly, but only 
approximated by a mapping T̂ satisfying 

ˆsup || || ,
2x M

rTx Tx
∈

− ≤  



14 Some Basic Ideas of Rough Analysis 

i.e., 2r is an upper bound of approximation error. Then 

ˆ ˆ ˆ ˆ ,Tx Ty Tx Tx Tx Ty Ty Ty k x y r− ≤ − + − + − ≤ − +

i.e., T̂ is -r roughly -k contractive. 

By applying successive approximations to -r roughly -k contractive mappings, we obtain the 
following result, which was actually stated for a metric space ( , )M d in [50]. 

Theorem 4.3. ([50]) Let :T M M→ be an -r roughly -k contractive mapping, where 
0r ≥ and (0,1)k ∈ are given. Suppose 0x M∈ and 

0 0: 0.
1
ra x Tx
k

= − − >
−

(a) If (1 )r kγ > − and ( )( )11log r
k ki aγ −

−≥ − then ix determined by (4.1) is a -γ fixed 
point of .T

(b) If x M∗ ∈ is a cluster point of the sequence ( )ix then it is a -γ fixed point of T with 
(1 ).r kγ = −

(c) For every 0,γ > the set Iγ of all -γ fixed points of T is bounded. If (1 )r kγ ≥ −
then Iγ is invariant under ,T i.e., .TI Iγ γ⊂

Obviously, if k is very close to 1 then (1 )r k− is very large. But this result cannot be 

improved anymore, as showed in [50] by considering the -r roughly -k contractive mapping 
1 2 1 2:T M M M M∪ → ∪ defined by 

12

22

if ( , 2(1 )]

if [ 2(1 ), ),

r

r

kx x M r k
Tx

kx x M r k

 − ∈ = −∞ − −= − − ∈ = − ∞

which admits no -γ fixed points with (1 )r kγ < − because (1 )x Tx r k− ≥ − for all 

1 2.x M M∈ ∪

Even if -γ fixed points with (1 )r kγ < − do exist, the iteration (4.1) is not suitable to 
approximate them, as pointed out in [50] by considering :T →� � satisfying 

2

2

if 0

if 0.

r

r

kx x
Tx

kx x

 − ≤= − − >

This mapping is -r roughly -k contractive, and for any 1
2 ,rγ ≥ each x satisfying 

2 2

1 1

r r
x

k k
γ γ− −− ≤ ≤
+ +
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is a -γ fixed point of .T But, for any starting point 0 ,x ∈ � the sequence ( )ix determined 
by (4.1) has only two cluster points ( )2 1

r
k−± and 

,
2(1 ) 2(1 )
r rT
k k

−=
− − 2(1 ) 2(1 )

r rT
k k

− =
− −

implies 

.
2(1 ) 2(1 ) 2(1 ) 2(1 ) 1
r r r r rT T
k k k k k

− − −− = − =
− − − − −

 

In particular, if ( ) ( )02 1 2 1
r r
k kx− −− < < then 

1 1 ,i i i ix Tx x Tx+ +− < − 0,1,2,...,i =

i.e., the more we try to approximate by successive approximation, the worse becomes the 
result. From the computational point of view, this remark is rather important, since one has 
often to do with approximated -r roughly -k contractive mappings instead of original 

-k contractive ones.  

A smaller invariant degree γ is only guaranteed if the domain M is assumed to be convex. 
By using the self-Jung constant of ,X we get 

Theorem 4.4. ([40]) Let :T M M→ be an -r roughly -k contractive mapping on a closed 
and convex subset M of some -n dimensional normed space .X Then 

10 : ( ) .
2 sx M x Tx J X rε ε∗ ∗ ∗∀ > ∃ ∈ − < +

If dim 1,X = or X is some two-dimensional strictly convex normed space, or X is a 
Euclidean space then 

1: ( ) .
2 sx M x Tx J X r∗ ∗ ∗∃ ∈ − ≤  

For dim ,X n= the above theorem and (4.3) yield 

0 : .
1
nx M x Tx r
n

ε ε∗ ∗ ∗∀ > ∃ ∈ − < +
+

In particular, if X is the -n dimensional Euclidean space 2,
n� then it follows from (4.2) that 

1
2

: .
2( 1)
nx M x Tx r
n∗ ∗ ∗

  ∃ ∈ − ≤    + 

This result is the same as given in [38] and [50]. 

To generalize the Brower fixed-point theorem, let us define two kinds of roughly continuous 
mappings. 
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For a given 0,r ≥ a mapping :T M M→ on some subset M of a normed linear space X
is said to be around -r continuous if for all x M∈ and 0ε > there exists 0δ > such that 
Ty Tz r ε− < + holds whenever , ,y z M∈ ,y x δ− < and .z x δ− < If δ does not 

depend on x then T is called uniformly -r continuous. Note that an -r roughly -k
contractive mapping is uniformly -r continuous. In the following roughly fixed-point 
theorem, if :T M M→ is uniformly -r continuous then M is not required to be closed. 

Theorem 4.5. ([36]) Let M be a nonempty convex subset of a -B space X and :T M →
.M For a given 0,r ≥ suppose that one of the following is true: 

(i) M is compact and T is around -r continuous; 

(ii) M is relatively compact and T is uniformly -r continuous; 

(iii) M is closed, ( )T M is relatively compact, and T is around -r continuous; 

(iv) ( )T M is relatively compact and T is uniformly -r continuous. 

Then we have: 

(a) For all 0,ρ > there exists x M∗ ∈ such that 
1 ( ) .
2 sx Tx J X r ρ∗ ∗− < +

(b) If dimX <∞ and 

( ) ( )s sJ X J X′ < for each proper subspace ,X X′ ⊂ (4.4) 

then there exists x M∗ ∈ satisfying 
1 ( ) .
2 sx Tx J X r∗ ∗− ≤  

(c) If dimX =∞ and 

( ) ( )s sJ X J X′ < for each finite dimensional subspace ,X X′ ⊂ (4.5) 

then there exists x M∗ ∈ satisfying 
1 ( ) .
2 sx Tx J X r∗ ∗− <

(d) In any case, there exists x M∗ ∈ satisfying .x Tx r∗ ∗− <

For instance, if 2
nX = � then (4.4) is satisfied because (4.2) implies 

1/2 1/2

2 2
2 2( ) ( )
1 1

n n
s s

n nJ J
n n

′  ′   = < =     ′ ′+ + 
� � if  .n n′ <

Therefore, if one of the conditions (i)-(iv) in Theorem 4.5 is fulfilled, then there exists 
x M∗ ∈ satisfying 
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1/2

2
1 ( ) .
2 2( 1)

n
s

nx Tx J r r
n∗ ∗

  − ≤ =    + 
�

If 2X = � then (4.5) is satisfied because (4.2) implies 

1/2
1/2

2 2
2( ) 2 ( )
1

n
s s

nJ J
n
 = < =  +

� � for any  .n ∈ N

Hence, if one of the conditions (i)-(iv) in Theorem 4.5 is fulfilled, then there exists 
x M∗ ∈ satisfying 

1/2
2

1 ( ) 2 .
2 sx Tx J r r−

∗ ∗− < =�

The invariant degrees given in Theorems 4.4 - 4.5 by using the self-Jung constant should be 
the best ones which are valid for all -r roughly -k contractive or around -r continuous or 
uniformly -r continuous self-mappings defined in corresponding normed linear spaces. For 
instance, consider the -n dimensional Euclidean space 2

nX = � and a subset 1{ , ,S x= …

1 2} n
nx + ⊂ � of 1n + linearly independent points satisfying 0i jx x r− = > for .i j≠

Then 11
1 1

n
in i

x x++ =
= ∑ is the center of the -n dimensional regular simplex convM S=

and 
1/2

2
1( ) ( )
2 2( 1)

n
i M s

nx x r M J r r
n

  − = = =    + 
� for  1 1.i n≤ ≤ +

By choosing Tx S∈ such that max ,s Sx Tx x s∈− = − we have 

diamTx Ty M r− ≤ = for all  , ,x y X∈

i.e., the mapping :T M M→ is -r roughly -k contractive and uniformly -r continuous, and 

( )Mx Tx r M x Tx− = < − for  \ { }.x M x∈

Hence, 1
22 ( )nsJ rγ = � is the smallest invariant degree of .T

To complete this section, let us mention some related results. 

A pioneer work was done by Klee [23] who considered self-mappings :T M M→ defined 
on a compact convex subset M of a normed linear space and satisfying 

 x M∀ ∈ ∃ neighborhood : diam ( )x xU T U M r∩ ≤ (4.6) 

and showed that 

 : .r x M x Txγ γ∗ ∗ ∗∀ > ∃ ∈ − ≤ (4.7) 

Note that the requirement (4.6) is stronger than the uniform -r continuity. 
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For a nonempty, compact and convex subset M of a normed linear space, Bula [8] proved 
that if :T M M→ is uniformly -r continuous then (4.7) holds true, and if 

0 0 : ,x M y M x y Tx Ty rε δ δ ε∀ ∈ ∀ > ∃ > ∈ − < ⇒ − < +

(i.e., T is - -0 r continuous, according to Section 3) then 

2 : .r x M x Txγ γ∗ ∗ ∗∀ > ∃ ∈ − ≤

Note that a - -0 r continuous mapping is around -r ′ continuous if 2 .r r′ ≥

In [10], Cromme and Diener used two measures of discontinuity defined by 

0 ( )

0 , ( )\{ }

( ) : sup lim sup sup ,

( ) : sup lim sup sup ,
x M y B x

x M y z B x x

T Tx Ty

T Ty Tz
σ

σ

σ

σ

δ

δ
∈ → ∈

∈ → ∈

= −

′ = −

where ( ) { | },B x y M x yσ σ= ∈ − < to state the following invariant property of self-

mapping :T M M→ on compact and convex subset M of n� :

: ( ),

( ) : .

x M x Tx T

T x M x Tx

δ

γ δ γ
∗ ∗ ∗

∗ ∗ ∗

∃ ∈ − ≤

′∀ > ∃ ∈ − ≤

This result was improved in [36]. 

Kirk [21] investigated so-called -h nonexpansive mappings :T M M→ on some metric 
space ( , )M d defined by 

( , ) max{ ( , ), }d Tx Ty d x y h≤ for all  ,x y M∈

and received for certain bounded metric spaces M

:x M x Tx h∗ ∗ ∗∃ ∈ − ≤

and further interesting results. 

5. Rough convexity 
Recall that a set D of a linear space is called convex if 

 0 1 0 1, (0,1) : : (1 ) ,x x D x x x Dλλ λ λ∀ ∈ ∀ ∈ = − + ∈ (5.1) 

and a function :f D → � (on a convex set D ) is said to be convex if the Jensen inequality 

 0 1( ) (1 ) ( ) ( )f x f x f xλ λ λ≤ − + (5.2) 

holds true for all 0 1,x x D∈ and (0,1).λ ∈

Convex functions have many nice properties, for instance: 
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(P1) Each lower level set is convex; 

(P2) Each local minimizer is a global minimizer; 

(P3) Each stationary point x∗ defined by 0 ( )f x∗∈ ∂ is a global minimizer; 

(P4) If a function attains its maximum on a compact convex domain, then it does so at least 
at one extreme point of this domain. 

They also have interesting analytical properties, which will be mentioned in Section 5.3. 

In order to obtain similar results for nonconvex functions, there are many concepts of 
generalized convexities, such as quasiconvexity, pseudoconvexity..., which can be read, for 
instance, in [3], [16], [17], [24], [52], [57]... The general scheme of these generalizations is 

f is -P convex ⇔ ( 0 1,x x D∀ ∈ : the convexity property P is fulfilled in 0 1[ , ]x x ), 
where 

0 1 0 1[ , ] : {(1 ) : [0,1]}.x x x xλ λ λ= − + ∈

There arise some questions: How often could such a property be satisfied for all 0 1,x x D∈ ?
How many practical nonconvex problems can be covered by such “fine generalizations”? 
Actually, the image of convexity is sometimes a question of the point of view. Many 
functions seem to be convex, but they are not, and many nonconvex functions are able to 
“get convex” by choosing a suitable point of view. If an observer stands far enough away 
from the object, he cannot recognize disfigurements in small domains, and it seems to be 
better. Mathematically, for allowing small nonconvex blips, the demand “for all 0 1,x x D∈ ”
is weakened by the requirement “for all 0 1,x x D∈ with 0 1x x r− ≥ ”, where 0r >
denotes the roughness degree. So a “rough generalization” of convex functions has the form 

f is -P convex ⇔ ( 0 1,x x D∀ ∈ with 0 1 :x x r P− ≥ is fulfilled in 0 1[ , ]x x ). 

There are several concepts of rough convexities. Let us mention some of them. Note that the 
Greek letters , ,ρ δ and γ in the following definitions are used as names, not as parameters. 

:f D X⊂ → � (on a convex set D ) is said to be -ρ convex w.r.t. the roughness degree r
provided that (5.2) is fulfilled for all 0 1,x x D∈ satisfying 0 1x x r− ≥ and for all xλ ∈

0 1[ , ].x x This notion was proposed by Klötzler and investigated by Hartwig [16]-[17] and 
Söllner [56]. 

According to Hu, Klee, and Larman [19], f is called -δ convex w.r.t. the roughness degree 
r if (5.2) is fulfilled for all 0 1,x x D∈ satisfying 0 1x x r− ≥ for all 0 1[ , ]x x xλ ∈ with 

0 /2x x rλ − ≥ and 1 /2.x x rλ − ≥ Analytical properties of -δ convex functions were 
considered in [32]. 

f is said to be -γ convex w.r.t. the roughness degree 0r > provided that 0 1x x r− ≥
implies 
 0 1 0 1( ) ( ) ( ) ( ),f x f x f x f x′ ′+ ≤ + (5.3) 
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where 0 1 0 1, [ , ],x x x x′ ′ ∈ 0 0x x r′− = and 1 1 .x x r′− = We introduced this notion in [29] 
and [31], and investigated it further in [46] and [47]. 

Relations between six kinds of roughly convex functions and their basic properties were 
stated in [33]. 

5.1. Some aspects of -γ convex functions 

To understand the idea of -γ convexity, let us consider real-valued functions on the real line. 
It is well known that a convex function :f →� � is characterized by the following slope 
property: If 1 2,x x< 1 0,γ > 2 0,γ > and 1 1 2 2,x xγ γ+ ≤ + then 

1 1 1 2 2 2

1 2

( ) ( ) ( ) ( )
.

f x f x f x f xγ γ
γ γ

+ − + −≤

For our generalization, we require this slope property to be maintained for 1 2 ,rγ γ= =
where r is a given positive number, i.e., 

 ( )1( ) ( ) ( )h x f x r f x
r

= + − is nondecreasing, (5.4) 

which is just equivalent to (5.3) when .D = � For continuous ,f this means that 

1( ) ( )
x r

x
F x f t dt

r

+
= ∫ is convex 

since ( ) ( ),F x h x′ = i.e., f is “convex in average”. The latter one is actually our original 
idea of -γ convexity. But, for functions on multidimensional spaces, it is difficult to handle 
with such average convexity. Therefore, we use the monotony (5.4) for our generalization. 

Proposition 5.1. ([29], [31])  

(a) If :f D X⊂ → � is convex then it is -γ convex w.r.t. any roughness degree 0.r >

(b) If :f →� � is periodic with period r then it is -γ convex w.r.t. the roughness degree 
.r

(c) If 1f and 2f are -γ convex w.r.t. the roughness degree r and if 1 0λ ≥ and 2 0λ ≥
then 1 1 2 2f fλ λ+ is -γ convex w.r.t. .r

For instance, for an arbitrary positive rational number ,r the function 

 
irrational

0 if is rational
( )

1 if is

x
x

x
φ

= 
(5.5) 

is periodic with period ,r hence, it is -γ convex w.r.t. the roughness degree .r In fact, in this 
theory, periodic functions play the role of constant ones, that is of value because many 
processes in nature are periodic or contain periodic components. 
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Another example is function 2( ) sin ,f x x k x= + which is -γ convex w.r.t. the roughness 
degree 2r π= because 2x is convex and sink x is periodic with period 2 .r π=

It is easy to verify that if :f X → � is additive, i.e., if ( ) ( ) ( )f x y f x f y+ = + for all ,x
,y X∈ then f is -γ convex w.r.t. any roughness degree 0.r >

We see that the class of -γ convex functions is relatively large. The next property 
emphasizes this aspect once again. 

Proposition 5.2. ([31]) Suppose that : [ , ]f a b ⊂ →� � is of bounded variation. Then, for 
every positive constant ,r there exist two functions 1 2f and f which are -γ convex w.r.t. the 
roughness degree r such that 1 2.f f f= −

The previous property corresponds to the fact that continuous functions can be approximated 
by the difference of convex functions, which is useful for global optimization (see [18]). An 
important aspect of the -γ convexity is its compatibility with numerical computation. Since 
only finitely many states can be represented by digital computers, a continuous function :g
→� � must be approximated by a piecewise constant function : .f →� � After 

standardization, these functions satisfy 

 ( ) ([ ]) ([ ])f x f x g x= = for all  ,x ∈ � (5.6) 

where [ ]x denotes the integer part of .x In general, f is not convex although g is convex. 
In contrast, -γ convexity can be maintained by this approximation. 

Proposition 5.3. ([48]) Suppose (5.6). Then f is -γ convex w.r.t. the roughness degree 
1r = if and only if g is -γ convex w.r.t. the roughness degree 1.r =

In particular, if g is convex then f is -γ convex w.r.t. the roughness degree 1.r =
Moreover, we showed in [48] that -ρ convexity and -δ convexity do not have this advantage. 
Thus, for computer world, convex functions usually appear as -γ convex ones. 

A typical difficulty often appears when doing with generalized convex functions is the 
lacking of a suitable sufficient condition for the corresponding generalized convexity. From 
this point of view, -γ convexity is an exception. Similarly to the classical convexity, we have 
the following sufficient condition. 

Proposition 5.4. ([46], [47]) Suppose that D X⊂ is an open convex subset and :f
D → � is Gateaux differentiable at every point of ,D and 1 0( ),z f z x x′ −� is a 

continuous mapping of any interval [ ]0 1,x x D⊂ into .R Then f is -γ convex if and only if 
its Gateaux derivative f ′ is -γ monotone in the following sense: 

if , ,x y D∈ x y γ− = then ( ) ( ), 0.f y f x x y′ ′− − ≥
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Applying the one-dimensional version ([46]) of the above result, Kripfganz showed in [25] 
that Favard’s ‘fonction penetrante’ denoting the optimal value function of a geometrical 
parametric optimization problem is -γ convex. 

5.2. Optimization properties 
A subset M X⊆ is said to be outer -γ convex w.r.t. the roughness degree 0r > if for all 
0x and 1x in M there exist k ∈ � and 

 
0

1
0 1

[0,1], 0,1,..., , with 0, 1,

0 for 0,1, , 1,

i k

i i

i k
r i k

x x

λ λ λ

λ λ+

∈ = = =

≤ − ≤ = −
−

… (5.7) 

such that 
 

i
x Mλ ∈ for  1,2, , 1,i k= −… (5.8) 

where 0 1(1 ) .x x xλ λ λ= − + (5.7)-(5.8) imply 
1i i

x x rλ λ+
− ≤ for 0,1,..., 1.i k= −

A function :f D → � defined on some convex D X⊂ is called outer -γ convex w.r.t. the 
roughness degree 0r > if for all 0x and 1x in D there exist k ∈ � and [0,1],iλ ∈
0,1, , ,i k= … satisfying (5.7) such that 

0 1( ) (1 ) ( ) ( )
i i if x f x f xλ λ λ≤ − + for 1,2, , 1.i k= −…

Proposition 5.5. ([44]) Suppose that :f D X⊂ → � is outer -γ convex w.r.t. the 
roughness degree 0.r > Then: 

1( )rP Each lower level set ( ) { : ( ) }f x D f xα α= ∈ ≤L is outer -γ convex w.r.t. .r

2( )rP Each -r local minimizer x∗ defined by  

*( ) ( )f x f x≤ for all x D∈ satisfying *x x r− ≤

is a global minimizer. 

It is easy to recognize that 1( )rP and 2( )rP are rough versions of 1( )P and 2( ),P re-
spectively. Since -,ρ -,δ and -γ convex functions are outer -γ convex w.r.t. corresponding 
roughness degree, they also have these properties. Concretely, if a function is -ρ convex or 

-δ convex or -γ convex w.r.t. the roughness degree 0r > then it fulfils 2( ).rP Similar or 
even stronger results are given in [19], [31], and [33]. 

Let us come now to a modification of property 3( ),P which actually says that, for convex 
functions, the necessary condition *0 ( )f x∈ ∂ for (local) minimizers becomes a sufficient 
condition for global minimizers. To state a rough version of 3( ),P we use the so-called 

-γ subdifferential (w.r.t. the roughness degree 0r > ) of :f X → � defined by 
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( ) : { :r f x Xξ ∗∂ = ∈ for all s X∈ satisfying s r= there exist ,x x X′ ′′ ∈

such that ,x x s′ ′′− = [ , ],x x x′ ′′∈ , ( ) ( )},s f x f xξ ′ ′′≤ −

which was introduced and investigated in [29] and [31]. Note that the more general restricted 
case :f D X⊂ → � was considered there, but, for the sake of simplicity, we only mention 
the unrestricted case D X= here. In general, ( )r f x∂ is convex for any .x X∈ If 
dimX < +∞ and f is continuous on ( ) { : }rB x x X x x r′ ′= ∈ − ≤ then ( )r f x∂ is 
compact. It was shown in [13] that the -γ subdifferential ( )r f x∂ could be empty, even if f
is -γ convex. But, the -γ subdifferential of any function at a global minimizer is nonempty, 
as given in the following. 

Proposition 5.6. ([31]) Let : .f X → � If 

*( ) ( )f x f x≤ for all x D∈ satisfying *x x r− ≤

then *0 ( ).r f x∈ ∂

This is a useful necessary condition for characterizing global minimizers, because many 
local minimizers, which are not a global minimizer, do not satisfy it. For instance, for very 
large 0,k > the number of local minimizers of function 2( ) sinf x x k x= + is also very 
large, which tends to +∞ as ,k → +∞ while only one of them is a global minimizer. In 
such a case, it is expensive to use the classical derivative alone to determine global 
minimizers. On the contrary, for a continuous function : ,f →� � the necessary condition 

*0 ( )r f x∈ ∂ means 

[ ]x∗ ∈ y, y + r for some y ∈ � satisfying ( ) ( ) 0,f y f y r− + =

which has exactly one solution y ∈ � if 2( ) sinf x x k x= + and 2sin .rr k> In particular, 
for 2 ,r π= y π= − is the only solution of equation ( ) ( ) 0,f y f y r− + = and our 
necessary condition is [ , ].x π π∗ ∈ − It is already quite helpful because this function only has 
one local minimizer in [ , ],π π− which can be determined uniquely by the necessary 
conditions *( ) 0f x′ = and *( ) 0f x′′ ≥ (see [31] for more details). 

In the previous example, many points z satisfy the roughly stationary condition 0 ( ),r f z∈ ∂
which indicates that such an -r stationary point is not necessarily a global minimizer. Thus 
3( )P may be modified as follows: 

3( )rP If 0 ( )r f z∈ ∂ then ( )inf ( ) inf ( ).
r x Xx B z f x f x∈∈ =

Proposition 5.7. ([31]) Suppose that :f X → � is -γ convex w.r.t. the roughness degree 
0r > and 0 ( ).r f z∈ ∂ Then, for all y X∈ there exists ( )ry B z′ ∈ such that ( ) ( ),f y f y′ ≤

which implies immediately 3( ).rP If f attains its global minimum, then it has a global 
minimizer in ( ).rB z
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To obtain a modification of 4( )P for roughly convex functions, we use the following notion: 
For some given 0r > and a convex set ,D z D∈ is said to be an -r extreme point of D
provided 

if 1
0 12 ( )z x x= + for some 0 1,x x D∈ then 0 1 .z x z x r− = − <

This notion was introduced in [30] for representing bounded convex sets which may be 
nonclosed.1

4( )rP If a function attains its maximum on a bounded convex domain, then it does so at least 
at an -r extreme point of this domain. 

Note that the domain mentioned in 4( )rP does not need to be compact. 

Proposition 5.8. ([33]) Suppose that X is a pre-Hilbert space and :f X → � is midpoint 
-γ convex w.r.t. the roughness degree 0,r > that is defined by 

the Jensen inequality (5.2) is fulfilled for 1
2λ = whenever 0 1 2 .x x r+ =

Then 4( )rP holds true for this .f

If a function is -ρ convex or -δ convex or -γ convex w.r.t. the roughness degree 0r > then 
it is midpoint -γ convex w.r.t. .r Therefore, the previous assertion is also valid for such a 
function. 

5.3. Analytical properties 
Convex functions have numerous interesting analytical properties. For instance, a proper 
convex function f on n� is continuous relative to ri(dom ),f Lipschitzian relative to any 
closed bounded subset of ri(dom ),f and almost everywhere differentiable in int(dom )f
(see [52], [53]...). These properties often fail to be true for generalized convex functions 
when the Jensen inequality (5.2) is not satisfied for all 0 1,x x D∈ and [0,1]λ ∈ as required 
in (5.1), especially for roughly convex functions where only 0x and 1x D∈ satisfying 

0 1 0x x r− ≥ > are taken into consideration. 

Some analytical properties of -ρ convex functions were investigated in [16] and [56]. In 
general, there are discontinuous -ρ convex functions even if D X⊂ = � (see [33]). But a 

 
1 Minkowski showed conv(ext )C C= if C is a compact convex subset of a finite dimensional real 
linear space, where ext C denotes the set of extreme points of .C By using closed convex hull 
instead of convex hull, Krein and Milman extended this result for compact convex subsets in locally 
convex Hausdorff linear spaces. Klee generalized these results for locally compact closed convex 
subsets which contain no line. To have a similar representation for convex subsets of a finite 
dimensional linear metric space, which are bounded but not necessarily closed, we replaced ext C by 
ext ,r C where ext r C denotes the set of r -extreme points of .C
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-ρ convex function :f D ⊂ →� � w.r.t. the roughness degree 0r > is continuous at any 
x satisfying [ , ] ,x r x r D− + ⊂ and if D contains such an interval [ , ]x r x r− + then this 
f is locally bounded. 

The boundedness and the continuity of -δ convex functions on the real line were studied in 
[32]. If :f D ⊂ →� � is -δ convex w.r.t. the roughness degree 0r > then it is bounded 
from above in each closed bounded interval of { : [ 2, 2] }rD x D x r x r D= ∈ − + ⊂ and 

bounded from below in each bounded interval of { :rD x D x r D= ∈ − ∈ or }.x r D+ ∈
In particular, if D = � then f is locally bounded. But there are totally discontinuous 

-δ convex functions even if .D = � For instance, the function :f →� � defined by 

[| | 0.5]( ) ( )xf x a xφ+= +

where φ is given in (5.5), is totally discontinuous, and it is -δ convex w.r.t. the roughness 
degree 2r = if and only if (3 13) 2.a ≥ +

Since -γ convexity is weaker than -δ convexity, there are totally discontinuous -γ convex 
functions on the real line. In fact, the function φ defined in (5.5) is such an example, as 
already mentioned after Proposition 5.1. Another example was considered in [33], namely 
the function :ϕ →� � defined by 

if

if for

if is irrational,

1 0,

( ) , , ( , ) 1,

0

x

x q x p q p q p q

x

ϕ

 == = ∈ ∈ =

	 �  

where ( , )p q denotes the greatest common divisor of the absolute values p and q of the 
integers p and ,q respectively. Both functions ϕ and ϕ− are periodic with period 1,r =
therefore they are -γ convex w.r.t. the roughness degree 1.r = Obviously, they are totally 
discontinuous. Moreover, they are totally unbounded on the entire real line because 

lim sup ( )
x x

xϕ
′→

′ = +∞ and lim inf ( )
x x

xϕ
′→

′− = −∞ for all .x ∈ �

Apparently, -γ convex functions do not surely have any good analytical properties. But the 
contrary was shown in [46]: -γ convex functions on the real line have so-called conservation 
properties, i.e., positive properties which remain true on every bounded closed interval or 
even in the entire domain, if they hold in a certain closed interval with length equal to the 
roughness degree. 

Theorem 5.9. ([46]) Suppose that :f D ⊆ →� � is -γ convex w.r.t. the roughness 
degree 0,r > and that [ , ]c c r+ is some subinterval of .D
(a) If f is bounded (from above or/and from below), or of bounded variation, or Riemann- 

or Lebesgue-integrable in the interval [ , ],c c r+ then it has this property on every 
bounded subinterval of .D
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(b) If f is continuous a.e. or differentiable a.e. on the interval [ , ],c c r+ then it has this 
property on the entire domain .D

Conversely, -γ convex functions on the real line possess so-called infection properties being 
negative ones which “propagate” to other places once appearing somewhere. 

Proposition 5.10. ([46]) Suppose that :f D ⊆ →� � is -γ convex with the roughness 
degree 0.r > If there exists a subinterval of D in which f is unbounded (from below or/ 
and from above), or of unbounded variation, or nowhere differentiable, or not integrable, or 
it has uncountable many discontinuities, then it has this property on any subinterval 
[ , ]x x r+ of its domain. If f is discontinuous almost everywhere on a certain interval  
[ , ] ,c c r D+ ⊂ so is it on every nonempty open subinterval of .D

In this context, a closed interval with length r (i.e., a closed ball with radius 2r ) plays the 

role of an elementary cell which contains positive and negative characteristics of the 
considered object. This corresponds to the phenomenon that information about an organism 
can be read in its genes.  

Analytical properties of -γ convex functions in normed linear spaces were studied in [47]. 

To obtain more positive analytical properties, we investigated in [14] and [15] a special class 
of -γ convex functions which fulfil the Jensen inequality (5.2) at both points 0 1 0 1, [ , ]x x x x′ ′ ∈
satisfying 0 0x x r′− = and 1 1x x r′− = whenever the distance between 0x and 1x D∈
is greater than the roughness degree 0,r > thus, they are called symmetrically -γ convex.

5.4. Additional comments 
Many functions appearing in economical problems are considered to be convex or concave, 
in the classical sense or some generalized sense. But this ideal assumption often fails if real 
jumps are taken into account. For instance, consider the transportation cost function f of a 
company using identical vehicles, then f is not continuous everywhere but has jumps at 
, ,nr n ∈ � where r denotes the maximal load of one vehicle, because an extra cost of 

driver, car, and fuel is caused if an additional vehicle is used although it carries only a little 
good amount. Therefore, this function f cannot be convex or concave, but it could be 
roughly convex (or roughly concave) w.r.t. the roughness degree .r Such a practical 
example of roughly convex functions was investigated in [45] to illustrate the practical 
relevance of the concept of rough convexities.  

From application point of view, a generalized convexity is more suitable if it is stable, at 
least by linear disturbances. We say that a function f is stable w.r.t. some property ( )P if 
( )P remains true when f is disturbed by addition with an arbitrary linear functional ξ with 
sufficiently small norm .ξ In [42], we showed that typical generalized convexities, such as 
quasiconvexity, explicit quasiconvexity, and pseudoconvexity, are not stable w.r.t. 1( ),P or 

2( ),P or 3( ),P respectively, that is the property which the corresponding generalized 
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convexity must maintain. Hence, a stable concept called -s quasiconvexity was introduced 
and studied there. 

A function f is said to be absolutely stable w.r.t. some property ( )P if f ξ+ fulfils ( )P
for any linear functional .ξ This condition is actually very strong. In fact, if a lower 
semicontinuous function : [ , ]f a b ⊂ →� � is absolutely stable w.r.t. property 1( )P then it 
must be convex. This and some other results on the absolute stability of generalized 
convexities were shown in [43] and [44]. In particular, our concepts of rough convexities are 
absolutely stable w.r.t. the optimization properties which we like to keep by generalization.  

Up to now, there are little investigations on roughly convex sets. Some properties of outer 
-γ convex sets are stated in [39] and [44]. For instance, if a closed subset S of some normed 

linear space X is outer -γ convex w.r.t. the roughness degree 0r > then (0)S S Bσ⊂ + for 
1
2 ( ) .sJ X rσ = Consequently, if x X∈ satisfies ( ) 0B x Sσ ′ /∩ = for some 1

2 ( )sJ X rσ′ >
then cl(conv ),x S∉ hence, x and S can be strictly separated by a nontrivial continuous 
linear functional. 

6. Concluding remarks 
A crucial key for scientific research is to choose an appropriate reference point or a suitable 
wise for consideration so that interested objects appear simpler and more reasonable, and 
some related laws can arise or show their face. 

Consider, for instance, a Lebesgue integrable function : .nf D ⊂ →� � In general, it could 
be so wild and so complicated that it is hard to determine its essential supremum (denoted by 
ess sup f ), while this problem is closely related to that of calculating the norm in .L∞ But 

by using the auxiliary function { : ( ) }( ) ( ( ) ) ,x D f xF f x dαα α µ∈ ≥= ∫ − we have to do with a very 
nice function : ,F →� � which is continuous, nonnegative, nonincreasing, convex, and has 
almost everywhere the derivative ( ) { : ( ) }.F x D f xα µ α′ = − ∈ ≥ Moreover, ess sup f is 

equal to the first root sup{ : ( ) 0}Fα α∈ >� of ,F which can be calculated by the Newton 
method. This fact was used in [49] as an approach to an integral method for finding global 
maxima. 

Further similar positive experiences are mentioned in this paper, such as the rough continuity 
of linear operators mapping an arbitrary normed space into a finite dimensional normed 
space (Theorem 3.2), the rough lower semicontinuity of convex functions defined on a 
convex set of any normed space (Theorem 3.3), and conservation properties of -γ convex 
functions (Theorem 5.9), which are not attainable in the classical fine context. An essential 
factor for the mentioned advantage is that a point x is not considered separately but 
embedded into its -r neighborhood ( ).rB x To understand this effect better, let us use the 
following comparison example: If we treat our world as a set of single atoms, then it seems 
to be too complicated to assert something more than physical laws at atom level. But if 
atoms are collected in suitable units, namely people, i.e., the atom set appears as mankind, 
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then the image of our world is much more simple and more beautiful, and “suddenly” it is 
possible to discuss a lot of properties, such as beauty, talent, psychology, habit, health, and 
genetics, which are meaningless in the context of an atom set. Back to our theory: in the 
rough analysis, closed balls with radius equal to some positive roughness degree are suitable 
packing units which help to make our objects simpler so that we are able to discover some 
interesting properties. 

A remarkable feature is that, by working with a positive roughness degree ( 0),r > we are 
able to avoid the closedness assumption in many assertions, for instance, in Proposition 2.11, 
Theorem 3.4, Theorem 4.5, and Proposition 5.8, although this assumption is necessary for 
corresponding statements in the classical analysis. It is no accidental outcome at all but a 
result of our intended effort to develop a suitable approach to such worlds which are rough 
and possibly open in some respects.  

Our paper only presents some beginning results. There are still many to do in this promising 
research direction, which requires enthusiastic interest, fresh strength, and intensive 
cooperation. 
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