The Threshold for the Existence of a Global Holderian Error Bound of a Polynomial Function

<u>H. H. Vui¹</u>

Abstract: Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a polynomial. For $t \in \mathbb{R}$, let $M_f(t) := \{x \in \mathbb{R}^n : f(x) \leq t\}$.

We say that $M_f(t)$ has a global holderian error bound (GHEB for short) if there exist $\alpha,\beta,c>o$ such that

$$(f(x) - t)_{+}^{\alpha} + (f(x) - t)_{+}^{\beta} \ge c \text{dist}(\mathbf{x}, \mathbf{M}_{\mathrm{f}}(\mathbf{t}))$$
(15)

for all $x \in \mathbb{R}^n$, where $(f(x) - t)_+ = \max\{f(x) - t, 0\}$.

We define the *threshold* for the existence of a global holderian error bound of f, denoted by S(f), as follows:

- $S(f) = -\infty$, if $M_f(t)$ has a GHEB for every $t \in \mathbb{R}$;
- $S(f) = +\infty$, if $M_f(t)$ does not have a GHEB for any $t \in \mathbb{R}$;
- $S(f) = \inf\{t : M_f(t) \text{ has a GHEB}\}$ if $S(f) \neq \pm \infty$.

In this talk we give sufficient conditions for $S(f) = -\infty$ or $S(f) \in \mathbb{R}$. It follows from these conditions that if f is a polynomial in two variables, then either $S(f) = -\infty$ or S(f) is finite. Next, using the Newton-Puiseux expansions at infinity of algebraic curves, we give a method of computing the exact value of S(f) of any polynomial f in two variables. This method also computes explicitly, in the case of two variables, the best possible exponents α and β in Inequality (15).

¹ Institute of Mathematics and Applied Science (TIMAS) Thang Long University Nghiem Xuan Yem Road, Hanoi, Vietnam hhvui@math.ac.vn