An Adaption of Hierarchical Matrix on Explicit Group Iterative Poisson Solver

N. A. Syafiq¹, <u>M. Othman^{1,2}</u>, N. Senu^{1,3}, and F. Ismail^{1,3}

Abstract: In this paper, an adaptive hierarchical matrix (H-matrix) explicit group iterative method based solution was proposed to solve two-dimensional Poisson problem with Dirichlet boundary condition. The finite difference approximation, specifically the Explicit Group method, was used to discretize the problem, which led to a system of linear equation. Two types of admissibility conditions, standard (s) and weak (w) are used to produces two different H-matrix structures, H_{s} - and H_w -matrix, respectively. The adaption of H-matrix to a linear system leads to reduce the memory size. Several experiments were conducted which compares the proposed H_w -matrix with the benchmarked H_s -matrix. The results showed the superiority of the proposed method when comparing both H-matrix structures.

- ² Department of Communication Tech and Network, Universiti Putra Malaysia
 43400 UPM Serdang, Selangor D.E., Malaysia
 mothman@upm.edu.my
- ³ Department of Mathematics, Universiti Putra Malaysia
 43400 UPM Serdang, Selangor D.E., Malaysia norazak@upm.edu.my, fudziah@upm.edu.my

¹ Institute for Mathematical Research, Universiti Putra Malaysia 43400 UPM Serdang, Selangor D.E., Malaysia nasyafiqnm@gmail.com