Asymptotic Solution of Singularly Perturbed Optimal Problem in the case of Intersection of Solutions of Degenerate Problem

N. T. Hoai¹ and G. A. Kurina²

Abstract: We will consider the following problem

$$P_{\varepsilon} \colon J_{\varepsilon}(u) = \int_{t_0}^{T} F(x, y, u, t, \varepsilon) dt \to \min_{u},$$
$$\frac{dx}{dt} = f(x, y, u, t, \varepsilon), \quad \varepsilon \frac{dy}{dt} = g(x, y, t, \varepsilon),$$
$$x(t_0, \varepsilon) = x^0, \quad y(t_0, \varepsilon) = y^0.$$

Here $x = x(t, \varepsilon) \in \mathbb{R}^l$, $y = y(t, \varepsilon) \in \mathbb{R}^m$, $u = u(t, \varepsilon) \in \mathbb{R}^r$, $t \in [t_0, T]$; $\varepsilon \ge 0$ is a small parameter; all functions F, f, g are sufficiently smooth in their domain where all derivatives are continuous.

We construct the asymptotical expansion of solution of the problem P_{ε} with the crucial assumption is that the algebraic equation

$$g(x, y, t, 0) = 0$$

has two solutions $y = \varphi_1(x, t)$ and $y = \varphi_2(x, t)$ which intersect at a point $t_c \in (t_0, T)$ and exchange their stability.

For constructing the asymptotic solution of the problem P_{ε} we use the accordingly values $y = \varphi_1(x,t)$ and $y = \varphi_2(x,t)$ on each time intervals $[t_0,t_c]$ and $[t_c,T]$. The postulated asymptotic expansion with boundary functions will be substituted into the original problem P_{ε} and then four types of optimal control problems are defined to get the asymptotic terms. We show that a minimized functional is non-increasing if higher order approximations to the optimal control are used. The estimates of the proximity of an approximate asymptotic solutions to the exact one are given.

¹ Department of General Science PetroVietnam University Long Toan, Ba Ria, Ba Ria - Vung Tau, Vietnam hoaint@pvu.edu.vn

 ² Mathematical Faculty Voronezh State University
1 Universitetskaya pl., 394006 Voronezh, Russia kurina@math.vsu.ru