On Maximization of a Psd Quadratic Form of Low Rank over a Box by Incremental Enumeration of Vertices of a Zonotope and Polynomial-time Approximations of the Objective Value

M. Černý¹ and M. Rada¹

Abstract: We consider the problem $\max_{x \in \mathbb{R}^n} x^T A x$ s.t. $x \in C := \{\xi : \underline{x} \leq \xi \leq \overline{x}\}$, where $\underline{x}, \overline{x} \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$ is psd with rank $d \ll n$. This problem can be rewritten into the form $\max_{y \in \mathbb{R}^d} y^T y$ s.t. $y \in Z$, where Z is the generator-presented zonotope $\{G\xi : \underline{x} \leq \xi \leq \overline{x}\}$ and $G \in \mathbb{R}^{d \times n}$ is such that $G^TG = A$. This reformulation converts the enumeration of 2^n vertices of the cube C into the problem of enumeration of vertices of the d-dimensional zonotope Z, which has a "much lower" number of vertices compared to 2^n . In particular, when d = O(1), the number of vertices of Z is $O(n^{d-1})$. We employ two versions of the recent IncEnu algorithm for enumeration of vertices of Z and compare them with Avis-Fukuda's Reverse Search method. Then we discuss a method for approximation of the optimal value of the problem based on "geometric rounding" of Z by a pair of Löwner-John ellipsoids (using Goffin's algorithm adapted for generator-presented zonotopes) over which the function x^TAx can be maximized efficiently. We also discuss questions related to the tightness approximation and complexity-theoretic considerations of the problem.

References

- [1] Allemand, K., Fukuda, K., Liebling, T.M., and Steiner, E.: A polynomial case of unconstrained zero-one quadratic optimization. *Mathematical Programming* **91** (1), 49–52 (2001).
- [2] Avis, D., and Fukuda, K.: Reverse search for enumeration. *Discrete Applied Mathematics* **65** (1-3), 21–46 (1996).
- [3] Ferrez, J.A., Fukuda, K., and Liebling, T.: Solving the fixed rank convex quadratic maximization in binary variables by a parallel zonotope construction algorithm. *European Journal of Operational Research* **166** (1), 35–50 (2005).
- [4] Sleumer, N.: Output-sensitive cell enumeration in hyperplane arrangements. In: Arnborg, S., and Ivansson, L. (eds.), Algorithm Theory SWAT98. *Lecture Notes in Computer Science* 1432, 300–309. Springer (1998).
- [5] Rada, M., and Černý, M.: A new compact output-sensitive incremental algorithm for enumeration of cells of hyperplane arrangements. *Mathematical Programming*, submitted (2014).

Department of Econometrics, Faculty of Computer Science and Statistics University of Economics Prague Winston Churchill Square 4, CZ13067 Prague, Czech Republic cernym@vse.cz, miroslav.rada@vse.cz