Convergence Rates for Tikhonov Regularization of Coefficient Identification Problems in Elliptic Equations

<u>D. N. Hào¹</u> and T. N. T. Quyen²

Abstract: We investigate the convergence rates for Tikhonov regularization of the problem of identifying the coefficient q in the Neumann problem for the elliptic equation

$$-{
m div}\;(q
abla u)=f\;{
m in}\;\Omega,\quad qrac{\partial u}{\partial n}=g\;\;{
m on}\;\;\partial\Omega$$

when u is imprecisely given by z^{δ} in $\Omega \in \mathbb{R}^d, d \geq 1$. We regularize the problem by minimizing one of the following convex functionals

1)
$$\frac{1}{2} \int_{\Omega} q |\nabla(u(q) - z^{\delta})|^{2} dx + \rho ||q - q^{*}||_{L^{2}(\Omega)}^{2},$$

2)
$$\frac{1}{2} \int_{\Omega} q |\nabla(u(q) - z^{\delta})|^{2} dx + \rho \int_{\Omega} |\nabla q|,$$

3)
$$\frac{1}{2} \int_{\Omega} q |\nabla(u(q) - z^{\delta})|^{2} dx + \rho \Big(\int_{\Omega} |\nabla q| + \frac{1}{2} ||q||_{L^{2}(\Omega)}^{2} \Big),$$

over the admissible set, where u(q) is the solution of the Neumann boundary value problem, $\rho > 0$ is the regularization parameter, q^* is a guess for the sought coefficient. Taking the solutions of these optimization problems as the regularized solutions to the identification problem, we obtain the convergence rates of them correspondingly to 1) q^* -minimum norm solution, 2) a total variation-minimizing solution in the sense of the Bregman distance, or 3) a total variation-minimizing solution both in the sense of Bregman distance and L^2 -norm under relatively simple source conditions without the smallness requirement on the source functions.

Similar results are obtained for the problem of identifying the coefficient a in the Neumann problem for the elliptic equation $-\Delta u + au = f$ in Ω , $\partial u/\partial n = g$ on $\partial \Omega$. Some numerical results are presented.

This research was supported by a Marie Curie International Incoming Fellowship within the 7th European Community Framework Programme and in part by NAFOSTED.

 ¹ Institute of Mathematics Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam hao@math.ac.vn

 ² Da Nang University of Education
 459 Ton Duc Thang Street, Da Nang City, Vietnam
 tntquyen@gmail.com