On Penalty and Gap Function Methods for Bilevel Equilibrium Problems

<u>B. V. Dinh¹</u> and L. D. Muu²

Abstract: Let C be a nonempty closed convex subset in \mathbb{R}^n and $f, g: C \times C \to \mathbb{R}$ be two bifunctions satisfying f(x, x) = g(x, x) = 0 for every $x \in C$. Such a bifunction is called an equilibrium bifunction. We consider the following bilevel equilibrium problem:

Find
$$\bar{x} \in S_q$$
 such that $f(\bar{x}, y) \ge 0, \forall y \in S_q$, (1)

where $S_g = \{u \in C : g(u, y) \ge 0, \forall y \in C\}$, i.e., S_g is the solution set of the equilibrium problem

Find
$$u \in C$$
 such that $g(u, y) \ge 0, \forall y \in C$. (2)

In this talk, we consider bilevel pseudomonotone equilibrium problems of the form (1). First, we propose a penalty function method to convert the problem (1) into one-level ones. Next, we use a regularized gap function for solving the penalized problems. We generalize a pseudo ∇ -monotonicity concept from ∇ -monotonicity and prove that under certain pseudo ∇ -monotonicity properties, any stationary point of a regularized gap function on the convex set C is a solution to the penalized subproblem. Finally, as an application, we discuss a special case that arises from the Tikhonov regularization method for pseudo monotone equilibrium problems.

Faculty of Information Technology Le Quy Don University
100 Hoang Quoc Viet Road, Hanoi, Vietnam vandinhb@gmail.com

 ² Institute of Mathematics Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Hanoi, Vietnam Idmuu@math.ac.vn