An Adaptive Finite Element Method for Flow Problems with Fluid-Structure Interaction

Th. Dunne¹ and <u>**R.**</u> Rannacher²

Abstract: We propose a general variational framework for the adaptive finite element approximation of fluid-structure interaction problems. The modeling is based on an Eulerian description of the (incompressible) fluid as well as the (elastic) structure dynamics. In this approach the deformation appears as a primary variable in an Eulerian framework. Based on this monolithic model of the fluid-structure interaction, we apply the "dual weighted residual (DWR) method" for goal-oriented a posteriori error estimation and mesh adaptation to fluid-structure interaction problems. Numerical results for stationary as well as nonstationary test examples are presented.

^{1,2} Institute of Applied Mathematics and Interdisciplinary Center for Scientific Computing (IWR) University of Heidelberg Im Neuenheimer Feld 293/294, 69120 Heidelberg, Germany rannacher@iwr.uni-heidelberg.de