Solving Polynomial Optimization Problems via the Truncated Tangency Variety and Sums of Squares

H. H. Vui ${ }^{1}$ and P. T. Son ${ }^{2}$

Abstract

This paper proposes a method for finding the global infimum of a polynomial f on an semialgebraic set S via sum of squares relaxation over its truncated tangency variety, even in the case where the polynomial f does not attain its infimum on S : Under a constraint qualification condition, it is demonstrated that: (i) The infimum of f on S and on its truncated tangency variety coincide; and (ii) A sums of squares certificate for nonnegativity of f on its truncated tangency variety. These facts imply that we can find a natural sequence of semidefinite programs whose optimal values converges monotonically increasing to the infimum of f on S.

[^0]
[^0]: 1 Institute of Mathematics
 Vietnamese Academy of Science and Technology
 18 Hoang Quoc Viet Road, Cau Giay District
 10307 Hanoi, Vietnam
 hhvui@math.ac.vn
 2 Department of Mathematics, University of Da Lat
 Da Lat, Vietnam
 pham_ts@yahoo.co.uk

