Convex Programming with SOS-Convex Polynomials

J. B. Lasserre ${ }^{1}$

Abstract: Consider the convex optimization problem

$$
\begin{equation*}
\mathrm{P}: \quad f^{*}:=\inf _{x}\left\{f(x): g_{j}(x) \leq 0, \quad j=1, \ldots, m\right\} \tag{1}
\end{equation*}
$$

where $f, g_{j} \in \mathbf{R}[x]\left(=\mathbf{R}\left[x_{1}, \cdots, x_{n}\right]\right)$ are given convex polynomials. Of course, problem (1) can be solved by interior point methods, e.g. using the logartithmic barrier function $x \mapsto \phi(\mu, x):=\mu^{-1} f(x)-\sum_{j=1}^{m} \ln \left(-g_{j}(x)\right)$ with barrier parameter μ. However in general, ϕ does not possess the higly desirable self-concordance property.

On the other hand, consider the subclass of problems (1) whose data f, g_{j} are SOSconvex polynomials. A polynomial $h \in \mathbf{R}[x]$ is SOS-convex if its Hessian $\nabla^{2} h$ is a sum of squares, i.e., $\nabla^{2} h=Q Q^{T}$ for some matrix polynomial $Q \in \mathbf{R}[x]^{n \times s}$ and some $s \in \mathbb{N}$; see [1]. Importantly, SOS-convexity can be checked numerically by solving a semidefinite program. Next, given a sequence $\mathbf{y}=\left(y_{\alpha}\right)$ indexed in the canonical basis $\left(X^{\alpha}\right)_{\alpha \in \mathbf{N}^{n}}$ of $\mathbf{R}[x]$, let $L_{\mathbf{y}}: \mathbf{R}[x] \rightarrow \mathbf{R}$ be the linear mappping

$$
f\left(=\sum_{\alpha} f_{\alpha} x^{\alpha}\right) \in \mathbf{R}[x] \longmapsto \quad L_{\mathbf{y}}(f)=\sum_{\alpha} f_{\alpha} y^{\alpha} .
$$

- We show that if (a) Slater's condition holds for P and (b) f, g_{j} are SOS-convex, $j=1, \ldots, m$, then f^{*} is also the optimal value of the semidefinite program

$$
\begin{cases}\inf _{\mathbf{y}} & L_{\mathbf{y}}(f) \tag{2}\\ \text { s.t. } & M_{d}(\mathbf{y}) \succeq 0, \quad y_{0}=1, \quad L_{\mathbf{y}}\left(g_{j}\right) \geq 0, j=1, \ldots, m\end{cases}
$$

where $M_{d}(\mathbf{y})$ is the moment matrix associated with \mathbf{y}, with rows and columns indexed in the canonical basis $\left(X^{\alpha}\right)$, and defined by:

$$
M_{d}(\mathbf{y})(\alpha, \beta)=L_{\mathbf{y}}\left(X^{\alpha+\beta}\right)=y_{\alpha+\beta}, \quad \alpha, \beta \in \mathbf{N}^{n} ; \quad|\alpha|,|\beta| \leq d
$$

with $2 d \geq \max \left[\operatorname{deg} f, \max _{j}\left[\operatorname{deg} g_{j}\right]\right]$.

- Hence, in contrast with (1), one may solve the semidefinite program (2) via interior point methods and a self-concordant logarithmic barrier function, as e.g. in several free access SDP solvers. In addition, the semidefinite constraint $M_{d}(\mathbf{y}) \succeq 0$ of (2) does not depend on the original problem data $\left\{f, g_{j}\right\}$, a very nice property that could be exploited in a specialized SDP solver dedicated to problems (1) with SOS-convex polynomials.
[1] J. W. Helton and J. Nie, Semidefinite representation of convex sets, Math. Prog., to appear.

1 LAAS-CNRS and Institute of Mathematics, University of Toulouse LAAS, 7 Avenue du Colonel Roche, 31077 Toulouse Cédex 4, France lasserre@laas.fr

