Real-Time Generation Algorithms for Linear-Recursive Sequences on Cellular Automata

<u>N. Kamikawa¹</u> and H. Umeo¹

Abstract: Cellular automata (CA) are considered to be a non-linear model of complex systems, computability theory, mathematics and theoretical biology in which an infinite onedimensional array of finite state machines (cells) updates itself in a synchronous manner according to a uniform local rule. It is studied in many fields such as complex systems. In this paper, We study a sequence generation problem on the CA. Let M be a CA and $\{t_n | n = 1, 2, 3, ...\}$ be an infinite monotonically increasing positive integer sequence defined on natural numbers, such that $t_n \ge n$ for any $n \ge 1$. We say that M generates a sequence $\{t_n | n = 1, 2, 3, ...\}$ in k linear-time if and only if the leftmost cell of M falls into a special state at time $t = k \cdot t_n$, where k is a positive integer. We call M a real-time generator when k = 1.

Arisawa [1971], Fischer [1965], Korec [1998] studied non-regular sequences on CA. Korec [1998] showed that prime sequence can be generated in real-time by a CA with 9 states. Kamikawa and Umeo [2008] showed that sequence $\{2^n \mid n = 1, 2, 3, ...\}$ can be generated in real-time by a CA with 3 states and sequence $\{n^2 \mid n = 1, 2, 3, ...\}$ can be generated in real-time by a CA with 4 states, and showed sequence generation power of CA with 2 internal states. In this article, we propose the generation algorithm of linear-recursive sequences, such as Fibonacci, tribonacci, tetranacci and Pell sequences. Let m be any natural number, such that $m \ge 1$. Let k be natural number given, such that $k \ge 1$, k < m. Let $b_1, b_2, \ldots, b_k, c_1, c_2, \ldots, c_k$ be natural number given, such that $b_1, b_2, \cdots, b_k \ge 1$, $c_1 < c_2 < \cdots < c_k$. Let a_m be kth order linear-recursive sequences, such that $a_m =$ $b_1 \cdot a_{m-1} + b_2 \cdot a_{m-2} + \cdots + b_k \cdot a_{m-k}, a_1 = c_1, a_2 = c_2, \ldots, a_k = c_k$. We show generation algorithm of sequence a_m on CA. We also study the number of internal states of generation algorithm. We show that an internal state of generation algorithm depends on $b_1, b_2, \ldots, b_k, c_1, c_2, \ldots, c_k$ and k. For example, we consider the case of k = 1. It is approved that $a_m = b_1 \cdot a_{m-1}$, $a_1 = c_1$. However, it is limited to $b_1 \ge 2$. Because all terms take c_1 for $b_1 = 1$, and a_m is not an infinite monotonically increasing positive integer sequence. When b_1 and c_1 are the even numbers and b_1 is not 2, the number of internal states of generation algorithm of sequence a_m is $4 \cdot b_1 + c_1 - 3$. In this case, sequence a_m can be generate in real-time on CA with $4 \cdot b_1 + c_1 - 3$ internal state.

¹ Graduate School of Engineering University of Osaka Electro-Communication Neyagawa-shi, Hatsu-cho 18-8, Osaka, 572-8530, Japan {naoki, umeo}@cyt.osakac.ac.jp