Real-Time Generation Algorithms for Linear-Recursive Sequences on Cellular Automata

N. Kamikawa ${ }^{1}$ and H. Umeo ${ }^{1}$

Abstract

Cellular automata (CA) are considered to be a non-linear model of complex systems, computability theory, mathematics and theoretical biology in which an infinite onedimensional array of finite state machines (cells) updates itself in a synchronous manner according to a uniform local rule. It is studied in many fields such as complex systems. In this paper, We study a sequence generation problem on the CA. Let M be a CA and $\left\{\mathrm{t}_{n} \mid n=1,2,3, \ldots\right\}$ be an infinite monotonically increasing positive integer sequence defined on natural numbers, such that $\mathrm{t}_{n} \geq n$ for any $n \geq 1$. We say that M generates a sequence $\left\{\mathrm{t}_{n} \mid n=1,2,3, \ldots\right\}$ in k linear-time if and only if the leftmost cell of M falls into a special state at time $t=k \cdot \mathrm{t}_{n}$, where k is a positive integer. We call M a real-time generator when $k=1$.

Arisawa [1971], Fischer [1965], Korec [1998] studied non-regular sequences on CA. Korec [1998] showed that prime sequence can be generated in real-time by a CA with 9 states. Kamikawa and Umeo [2008] showed that sequence $\left\{2^{n} \mid n=1,2,3, \ldots\right\}$ can be generated in real-time by a CA with 3 states and sequence $\left\{n^{2} \mid n=1,2,3, \ldots\right\}$ can be generated in real-time by a CA with 4 states, and showed sequence generation power of CA with 2 internal states. In this article, we propose the generation algorithm of linear-recursive sequences, such as Fibonacci, tribonacci, tetranacci and Pell sequences. Let m be any natural number, such that $m \geq 1$. Let k be natural number given, such that $k \geq 1, k<m$. Let $b_{1}, b_{2}, \ldots, b_{k}, c_{1}, c_{2}, \ldots, c_{k}$ be natural number given, such that $b_{1}, b_{2}, \cdots, b_{k} \geq 1$, $c_{1}<c_{2}<\cdots<c_{k}$. Let a_{m} be k th order linear-recursive sequences, such that $a_{m}=$ $b_{1} \cdot a_{m-1}+b_{2} \cdot a_{m-2}+\cdots+b_{k} \cdot a_{m-k}, a_{1}=c_{1}, a_{2}=c_{2}, \ldots, a_{k}=c_{k}$. We show generation algorithm of sequence a_{m} on CA. We also study the number of internal states of generation algorithm. We show that an internal state of generation algorithm depends on $b_{1}, b_{2}, \ldots, b_{k}, c_{1}, c_{2}, \ldots, c_{k}$ and k. For example, we consider the case of $k=1$. It is approved that $a_{m}=b_{1} \cdot a_{m-1}, a_{1}=c_{1}$. However, it is limited to $b_{1} \geq 2$. Because all terms take c_{1} for $b_{1}=1$, and a_{m} is not an infinite monotonically increasing positive integer sequence. When b_{1} and c_{1} are the even numbers and b_{1} is not 2 , the number of internal states of generation algorithm of sequence a_{m} is $4 \cdot b_{1}+c_{1}-3$. In this case, sequence a_{m} can be generate in real-time on CA with $4 \cdot b_{1}+c_{1}-3$ internal state.

[^0]
[^0]: 1 Graduate School of Engineering
 University of Osaka Electro-Communication
 Neyagawa-shi, Hatsu-cho 18-8, Osaka, 572-8530, Japan \{naoki, umeo\}@cyt.osakac.ac.jp

