Post-Correction Strategies for Perturbed Nonsmooth Equations

<u>**R.** Griesse¹</u>, **T.** Grund², and **D.** Wachsmuth³

Abstract: Nonsmooth equations arise in many applications, such as contact problems or constrained optimal control problems, and variational inequalities in general. We consider nonsmooth operator equations of the form

$$u = \Pi (g(\theta) - G(\theta)u)$$

where $G(\theta)$ is an operator with smoothing properties, u denotes the unknown and Π is some nonsmooth projection. The problem and hence the solution $u[\theta]$ depend on a parameter θ which models perturbations. We investigate several post-correction strategies to recover $u[\theta]$ from a nearby nominal solution $u[\theta_0]$. With an appropriate strategy, the approximation error in the L^{∞} norm can be shown to be $o(||\theta - \theta_0||)$, while for other strategies this holds only in weaker norms. Numerical examples will illustrate our results.

¹ Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences Altenbergerstrasse 69, A–4040 Linz, Austria roland.griesse@oeaw.ac.at

² Institute of Mechatronics, Technische Universität Chemnitz Reichenhainer Str. 88, D–09126 Chemnitz, Germany thomas.grund@mail.com

³ Institut für Mathematik, Technische Universität Berlin, Sekretariat MA 4–5 Strasse des 17. Juni 136, D–10623 Berlin, Germany wachsmut@math.tu-berlin.de