Lagrange Multipliers Theorem and Applications in Mathematical Programming

D. M. Duc¹, N. D. Hoang², and L. H. Nguyen³

Abstract: We prove a discrete implicit mapping theorem and apply it to extend the results in [1] to the case of vector constraint functions. Our results can be applied to functions which are not C^1 -Frechet differentiable neither Lipschitz continuous, even they are not continuous. Applying these results, we extend some results in [2].

References:

- L.H. An, P.X. Du, D.M. Duc and P.V. Tuoc, Lagrange multipliers for functions derivable along directions in a linear subspace, Proc. Amer. Math. Soc.133 (2005), 595-604.
- [2] C.R. Bector, S. Chandra and Abha, On incomplete Lagrange function and saddle point optimality criteria in mathematical programming, J. Math. Anal. Appl. 251(2000), 2-12.

^{1,2,3} Department of Mathematics and Computer Science University of Nature Sciences, National University of Ho Chi Minh City 227 Nguyen Van Cu Road, 5 District, Ho Chi Minh City, Vietnam dmduc@hcmc.netnam.vn, hoang1311@walla.com,lhnnhl@yahoo.com