
106 Abstracts

Comparison of Parallel Programming Models

on Clusters of SMP Nodes

R. Rabenseifner1 and G. Wellein2

Abstract: In High Performance Computing, most systems are clusters and each node of

a cluster is a parallel shared memory system (SMP node). The SMP nodes vary in size

and quality of CPUs in a wide range. There are dual-CPU PC systems with BUS based

memory access, nodes with 8, 16 or 24 CPUs with higher memory bandwidth or independent

memory paths in the best case, and memory and CPU may implement a cache based

access, or a pseudo-vector or full vector access. All these hybrid clusters of SMP nodes

can be programmed with pure MPI, i.e., one MPI process is running on each CPU. This

programming model implies an additional message transfer overhead between the CPUs

within an SMP node. To prohibit this overhead, hybrid programming models are proposed,

combining MPI with OpenMP.

MPI is used only for the inter-node communication and OpenMP (or automatic par-

allelization) is used for the parallelization inside of an SMP node. In the most commonly

used hybrid model, the MPI routines are called only outside of OpenMP parallel regions,

i.e., they are called only from the master threads and only while all other threads in the

calling node are sleeping. Although this model avoids massaging overheads inside of the

SMP nodes, there are even so serious drawbacks: First, on most platforms, the master

thread is not able to use the full bandwidth of the inter-node network. This is shown with

different benchmarks on several platforms. Second, if all threads except the master thread

are sleeping and dedicated CPUs are used, then all MPI communication must be weighted

by the number of threads used in each MPI process.

To overcome these drawbacks, several strategies are discussed. On large SMP nodes,

the node can be virtually separated into several MPI processes with a smaller amount of

threads to guarantee that the inter-node bandwidth can be used, and that therefore the

total cost of communication is minimized. To minimize idle time of sleeping threads, the

communication and computation can be overlapped. The implications on the application

itself and on the usage of OpenMP and MPI and on load balancing issues are discussed. A

benchmark with a Jacobi-Davidson solver shows a significant performance win (50%) with

a strategy that reduces the complexity of the load balancing by reserving a fixed amount of

resources for communicating.

1 High-Performance Computing-Center (HLRS), University of Stuttgart
Allmandring 30, D-70550 Stuttgart, Germany
rabenseifner@hlrs.de

2 Regionales Rechenzentrum Erlangen
Martensstraße 1, D-91058 Erlangen, Germany
gerhard.wellein@rrze.uni-erlangen.de




